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Abstract. A study of electronic scattering from a nonlinear Schrlidinger equation in a 
one-dimensional periodic chain in the presence of an applied electric field is presented. 
The scattering properlies are measured as a function of the strength of the nonlinear cubic 
term, a. The stability, shapes and lifetimes of the Stork lodder resonancer, present in the 
linear system, are studied as a function of a. It is found that these quantities are significantly 
modified by the nonlinearities, much more so for 01 > O  than for a <O. 

The resonant tunnelling of an electronic wave through a series of potential barriers is 
a basic phenomenon in quantum mechanics (QM). This resonant tunnelling is essential 
in the understanding of transport properties in artificially fabricated superlattices, cf 
[l]. The transmission properties of the scattered electronic waves depend crucially on 
the linear superposition principle, of fundamental importance in QM. Recently, the 
transmission problem has been studied in the case where the underlying equation is 
nonlinear [2-51. Delyon et al studied the band structure of the NLSE, in the tight-binding 
approximation, in one dimension 121. Their work has been extended and clarified by 
various authors [3-51. Using the elements of the theory of dynamical systems, as 
applied to the resulting nonlinear maps, these studies have mostly been directed at 
understanding the band structure and wavefunction properties of the model. The 
fundamental question of how the standard QM resonances get modified by the non- 
linearities was not considered. To study this question we study the effects of non- 
linearities on the nature and structure of the Stark ladder resonances (SLR), as a 
function of the nonlinearity parameter a. The nonlinearity considered in this letter is 
that of the nonlinear Schrodinger equation (NLSE). This type of nonlinearity has been 
studied extensively as a prototype in nonlinear studies. The model arises in many fields 
of physics. In electronic systems it would correspond to a Hartree type of density 
self-interaction; in superconductors to the Ginzburg-Landau equation; in superfluids 
to the Gross-Pitaievsky equation and in studies of nonlinear optics. The SLR have been 
studied exrensiveiy, iheorericaiiy i 6 - Q  and evidence ofiheir existence has been Found 
recently experimentally in semiconductor superlattices [9] via the photoinjection of 
electron-hole pairs. The SLR, for particular parameter values, are characterized by 
being isolated and well approximated by Lorentzian lineshapes. As a function of the 
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energy E they are separated by a distance AE = NFa, where N is an integer, (I the 
lattice spacing, F = eX with e the charge, and '8 the extemally applied electric field. 
The resonances have a width at half maximum, r, that changes as function of F like 
r = A e-BtF9 with B and A constants dependent on the form of the potential [6,7]. 
This essential singularity in r appears because of Zener tunnelling between bands 
which is crucial in order to provide a full understanding of the SLR in the linear case. 
We describe below the modifications to the SLR produced by the self-interactions which 
lead to the nonlinear problem. Since most of the quantities calculated here are evaluated 
outside of the nonlinear region we can make use of the standard probes from scattering 
theory to ascertain the modifications introduced by the nonlinearities. The model 
studied in this letter is defined by the NLSE 

Here Y ( x )  is the single particle wavefunction at x, and we are taking atomic units 
with h2/2m = 1, with n an integer and (I the lattice spacing fixed to one henceforth. 
The periodic &function potential of strength p, corresponds to the standard Kronig- 
Penney model. The nonlinear interaction is of &function type and with strength a. 
This means that the electron propagates freely between lattice sites and interacts only 
at x = n. The advantage of this choice is that one can solve the continuous NLSE exactly 
between lattice sites and it thus allows for a thorough analysis of the problem. We do 
not expect that this assumption will change the general nature of the results. This form 
for the nonlinear term has been considered previously by Grabowsky and Hawrylak 
in the zero-field case [51. Their justification for this model.invokes having a superlattice 
with periodic, very thin, inclusions of a nonlinear material that can produce the localized 
form of the nonlinearity. Note that the nature of the solutions to the nonlinear 
continuous equation is qualitatively different if the k-space is bounded (the tight- 
binding approximation) than if it is unbounded (including all the bands). Here we 
consider the continuous NLSE which entails including all the bands in the analysis of 
the model. 

The problem studied here assumes a region 0 < x < L where a, p # 0, and a, p = 0 
for x S 0 and x L. The transmission problem considers an incident wave at x = L 

f o r x s 0 ,  where k , = m , a n d  k _ , = a a r e t h e  wavevectorsatx=Landx=-1, 
respectively. The energy E is measured from the top of the electric field ramp. The 
usual treatment of a scattering problem consists of finding the reflected and transmitted 
amplitudes, r, and 1, in terms of the incident amplitude r, and E. Since the superposition 
principle is no longer valid in the nonlinear case, f is not uniquely defined by r,. What 
has been done by previous authors [2-5]  is to invert the problem by fixing the output 
f and then calculating the input r,. In this case the problem is uniquely defined. The 
transmission and reflection coefficients are then given by T =  (k-,/kJf/r0~', and 
R = lr,/ro12, respectively. Current conservation remains valid so that Tf R = 1. In order 
to calculate T as a function of E we solve the NLSE in terms of its exact PoincarC map 
between lattice sites, following a technique similar to that used in the linear case [71. 
The effect of the electric field is approximated by a step potential which has been 
shown to be a good representation of the linear electric field potential. The wavefunc- 
tions between lattice sites are then plane waves of the form Y. =A, B. e-'kmx, 
where the nth momentum in the nth cell, n < x < ( n + l ) ,  is given by k. =-. 
Using the continuity conditions for the wavefunction and its derivative at  each lattice 

with%$I('(x) = r ,e- '*~("-~)+r  I e ' * ~ ( ~ - ~ )  , fo rx -  =- L, and a transmitted wave Y ( x )  = f e-'*-?" 
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site we obtain the nonlinear map, 

Fixing the output to 1tI2 = 1 we vary a, noting that what matters is the product of 1 f 1 2  
and a. The input is then obtained from the equation, 

(qL+, -e-'*LLVLt2) 
r, = f 1) (3) 

In figure 1 we show the transmission coefficient as well as its contour plot as a function 
of E and a, for a within the range a E [-0.2,0.2], and E E [ 118,1221. We have chosen 
this region of energy so that a small number of SLR in the a = 0 case are well defined. 
We note a clear difference between the a > 0 and a < 0 regions. When 01 < 0, r increases 
so that for values of 01 s -0.4, not shown in the figure, the nonlinear Stark ladder 
resonances (NSLR) overlap to an extent that they are no longer well defined. In contrast, 
for a > 0 the NSLR remain clearly separated with r decreasing as a increases while at 
the same time the lineshape is no longer Lorentzian. We can still identify l/r with a 
transit time across the nonlinear region, as is usual in the linear case; thus for a > 0  
the transit time increases while for a 1 0  it decreases. The contour plot in figure 1 
shows that for LI < O  the separation between the maxima in Tis  still well approximated 
by the Wannier or SLR condition, while for a > 0, even for relatively small values of 
a, this is no longer true. A qualitative understanding of the physics contained in figure 
1 comes from considering the competition between the different terms in equations 
(1) and (2). When a = O  the appearance of the SLR is due to the localizing effect of 
the electric field. To understand what goes on in this case one can use the Zener tilted 

., 

.I- 

Figure 1. Transmission coefficient T as a function of energy and ol for L =  100, F=0.8 .  
The contour plot corresponds to the projection of T onto the E Venus U plane. 
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band picture and semiclassical quantization considerations. In equation (2) (a = 0) we 
have a complex map in terms of which the SLR can be understood as a family of 
quasiperiodic orbits with frequencies given by the Wannier conditions. When a # 0, 
the map is nonlinear with an unbounded phase space, and the nonlinearity also has 
a localizing effect on the solutions. The sign of a is crucial since the effective quartic 
potential in 8, given in equation ( l ) ,  has different stability properties if a 2 0  than if 
a < 0. For a > 0 there are quasiperiodic as well as chaotically diverging orbits [4]. For 
a P a,(€, F ) ,  the orbits are chaotic with divergent r,, so that T becomes extremely 
small (in our calculations we set the lower bound of T s  lo-"), so that all the Y 
solutions will be localized by the nonlinearity. By contrast for a < O  the Y solutions 
become more extended as a decreases in value. We note that the map (W,,,, Yn) = 
M ( Y n ,  Yn-,) in this case is much more complicated than in the F=O case [4] since 
the matrix M is an explicit function of n, thus making the stability analysis of the map 

We now describe the NSLR in terms of their lineshapes and phaseshift properties. 
In figure 2 we show results for T and d0JdE as a function of E for three cases, ( a )  
a = O ,  ( b )  a=O.O6 and ( c )  a=-0 .15 .  Here 0, is defined from r,(€)=lr,le",. The 
calculations of dO./d€ were carried out by iterating simultaneously two PoincarC 
maps, one for Y, and the other for dWJd€, obtained from taking the E derivative 
of equation (2). Because we evaluate d0,jdE in the region where the equations are 
linear we can assume that it is directly related to the transit time as in the linear case. 
Figure 2 ( a )  shows well defined SLR with the expected behaviour for d0,/dE, in 
accordance with linear scattering theory. As also seen in figure 1 for a > 0, although 
less clearly, figure 2 ( b )  shows lineshapes of isolated resonances clearly of non-Lorent- 
zian forms. In the energy range considered we note that the two SLR for a = 0 have 
become almost four. As seen in the contour plot this is so because the separation 
distance between NSLR decreases as a increases. We note that the zero values in T in 
figure 2(b)  are purely generated by the nonlinearity. Since the NSLR are still isolated, 
one can approximate the nth NSLR by an energy-dependent complex pole of the analytic 

mnra rnmnlPr .. L.,... '.,..LY.U". 

Lom (b) a=.OB ( c )  a=-.15 
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Figure 2. Transmission coefficient T and phaseshift derivative d9,JdE for three Cases: ( a )  
n =O.O, ( b )  OL =0.06 and (e) a = - O . I S .  The energy scale shown in ( b )  from 119-121 is 
the same in ( 0 )  and ( E ) .  
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continuation of the resolvent operator to the non-physical sheet, as discussed in [al. 
The pole has real and imaginary components, & ( E )  and T . ( E )  respectively. These 
quantities can be calculated in principle by perturbation theory. We observe from our 
calculations that close to a NSLR, for a small and positive, some of the resonances do 
not have the usual quadratic maximum but instead it is linear. This difference may 
have important consequences in the analysis of the resonant lineshapes. Furthermore, 
in contrast to the linear case we note extra peaks in figure 2 ( b )  that appear in the 
wings of the lineshapes. This result shows that, as may have been expected, the 
connection between resonant states as detected by the maxima of T, and maxima in 
the derivatives of Or, known as Levinson’s theorem in the linear case, does not hold 
in the nonlinear one. In figure 2(c) three NSLR for (I = -0.15 are shown. The lineshapes 
of these resonances look like standard resonances with a background larger than in 
figure 2(a) .  One could then assume that the properties of these resonances should be 
similar to those given in 2(a) .  That this is not so is evident from the result for dO,/dE 
which shows small peaks at positions where T has maxima. However, we have increased 
the number of points in the energy mesh and have found that those peaks are as small 
as shown and do not represent real resonances of the type shown in figure 2 ( a ) .  A 
clear conclusion from the results presented in the figures is that the nonlinearities do 
modify singificantly the behaviour of the SLR and that the changes are strongly 
dependent on the sign of a. 

The discussion of the results presented above has been qualitative. We now give a 
series of comparative quantitative results between the linear and nonlinear cases. In 
table 1 we list the results for the average energy separations of the maxima of T for 
different values of n as well as their half widths at half maximum, (r)-, where the 
bracket represents an average taken with respect to a given set of NSLR, within a given 
energy interval and for a given value of n. As in the linear case, and for the parameters 
considered, we find that we can fit the results to the form (r), =A,, eCBOiF. As shown 
in table 1 B, decreases as n (<O) decreases while it increases as a > 0 increases. In 
the table we show results for ( P E ) ,  to check the effect of nonlinearity on the Wannier 
condition. It is seen that varying a does change the linear condition ( A E )  = NF 
somewhat for the parameter values considered. Note that as a( > 0) first increases 
(AE), increases while for larger n it decreases singificantly as seen in the contour 
plot. For n < O  the tendency is also to reduce (AE), as a < 0 decreases. A study of 

Table 1. Results for the resonance averages of (D. =A. 
and negative. Here L= IW, 0 = 2  and F =0.8. 

and (AE).., far U positive 

U 0.0 -0.01 -0.02 -0.03 -0.04 
A 0.470 0.4701 0.364 0.380 0.321 
B 2.054 2.026 1.899 1.888 1.808 
( A E ) ,  0.7986 0.7968 0.7959 0.7938 0.7924 

U > O  

II 0.0 0.01 0.02 0.03 0.04 
A 0.470 0.503 0.556 0.656 0.764 
B 2.054 2.115 2.195 2.319 2.455 
W E ) .  0.7986 0.8011 0.8036 0.8074 0.8134 
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the L dependence of the results mentioned above was also carried out. We found that 
within the interval 1OOG L=S 140, the essential features of the results remain unchanged. 

In conclusion, we have presented a study of the effects of nonlinearities on the 
stability of quantum mechanical resonances. We have taken as an example the SLR 
within the context of the NLSE with strength a. We found that the nonlinearities, or 
interactions, modify the nature of the SLR significantly, much more so for a > 0 than 
for a <O. The transit times through the nonlinear medium were discussed and found 
to increase for a > 0 and decrease for a < 0. Of importance is that the lineshape of 
the resonances is no longer Lorentzian, more so for a > 0 than in the a < 0 case. A 
detailed discussion and further extensions of the results presented here will be reported 
elsewhere [lo]. . 
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